
Niket Choudhary Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 2), January 2015, pp.105-110

 www.ijera.com 105 | P a g e

Pattern based approach for Natural Language Interface to

Database

Niket Choudhary*, Sonal Gore**
*(Department of Computer Engineering, Pimpri-Chinchwad College of Engineering, Savitribai Phule Pune

University, Pune, India)

** (Department of Computer Engineering, Pimpri-Chinchwad College of Engineering, Savitribai Phule Pune

University, Pune, India)

ABSTRACT
Natural Language Interface to Database (NLIDB) is an interesting and widely applicable research field. As the

name suggests an NLIDB allows a naive user to ask query to database in natural language. This paper presents

an NLIDB namely Pattern based Natural Language Interface to Database (PBNLIDB) in which patterns for

simple query, aggregate function, relational operator, short-circuit logical operator and join are defined. The

patterns are categorized into valid and invalid. Valid patterns are directly used to translate natural language query

into Structured Query Language (SQL) query whereas an invalid pattern assists the query authoring service in

generating options for user so that the query could be framed correctly. The system takes an English language

query as input, recognizes pattern in the query, selects one of the before mentioned features of SQL based on the

pattern, prepares an SQL statement, fires it on database and displays the result.

Keywords - natural language interface, pattern based, relational database, SQL

I. INTRODUCTION
Databases are an essential component for any

enterprise. They contain huge volume of valuable

data. To handle this large volume of data a powerful

system called Database Management System

(DBMS) is used. One of the most important features

provided by a DBMS is Structured Query Language

(SQL). It is used to store, retrieve and process

structured data. But use of SQL restricts a naive user

to retrieve his desired data. To overcome this

problem, many researchers are continuously working

on the concept of Natural Language Interface to

Database (NLIDB). An NLIDB takes input a query

in natural language, translates it into SQL and fires it

on the database [1]. The NLIDB is a branch of more

comprehensive subject namely Natural Language

Processing (NLP). NLP is concerned with creating

an easy and user friendly environment to interact

with computer without requiring some programming

language skills. Through NLP one can interact with

computer in his natural language.

 Many interesting theories and approaches have

been developed so far about how to develop an

NLIDB with improved accuracy [2], able to handle

more natural language expressions [3,4] and able to

guess real requirement of user who has not properly

asked the query [5]. In this paper a novel approach

for NLIDB is proposed. The proposed system is

given the name Pattern based Natural Language

Interface to Database (PBNLIDB). The systems

developed so far are able to handle simple queries

and join between two tables. In PBNLIDB, other

than providing more knowledge of SQL

functionalities to the translation function, features

such as error detection and query authoring at query

asking phase are employed. PBNLIDB allows a non-

SQL expert user use more functionalities of SQL

than provided by any other systems developed so

far. In the proposed system patterns are defined for

SQL features like simple query, aggregate function,

relational operator, short-circuit logical operator and

join. These patterns are categorized into valid and

invalid patterns. Natural language queries containing

valid patterns are mapped to their corresponding

SQL template and thus translated into an SQL query.

Queries containing invalid patterns are processed by

query authoring service and options are presented to

the user assisting him in framing correct query.

 In this article contents are organized as follows.

Section II explores some of the earlier NLIDB

systems; section III describes the proposed work;

finally section IV concludes the paper with some

opportunities of future work.

II. RELATED WORK
In recent times, there have been rising demands

by non-expert computer users to query relational

databases in natural language. Actually, research in

NLIDB was started in the decade of 1960 [1]. The

Lunar Science Natural Language Information

System (LSNLIS) [6] was the first system based on

the concept of NLIDB. It was actually a question-

answering system. It was developed for the

RESEARCH ARTICLE OPEN ACCESS

Niket Choudhary Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 2), January 2015, pp.105-110

 www.ijera.com 106 | P a g e

geologists who were studying about rocks on moon.

The information was obtained by the Apollo

missions. It was a waste of time and cost to teach the

geologists the programming skill to process and

retrieve data. Similarly LADDER was an NLIDB

developed for US Naval ships [7]. Then in late

seventies RENDEZVOUS System [8] appeared.

This system first presented the use of paraphrasing

and clarification dialog with the user in case the

system was not able to parse the input. In the

eighties CHAT-80 [9] was one of the most

referenced NLP systems. It was implemented in

Prolog and the database was consisted of world facts

like oceans, major seas, major rivers and major cities

of 150 countries. It also consisted of a small English

vocabulary package required to process the query.

ASK, developed in 1983, was the system that was

able to work upon multiple databases

simultaneously. NALIX [10], developed in 2005, is

a natural language interface to XML. PRECISE [2]

presented an interesting idea of making interaction

with user more human like. In this if user asks one

question and then asks another similar question by

only changing the values then he does not need to

ask the complete question. He can only ask partial

question and remaining words are taken from

previous question. For example if user first asks a

query “who is the author of Algorithms?” then while

asking second query he does not need to ask

complete query, he can only ask “Database?”. It will

automatically be taken as “who is the author of

Database?”. Generic Interactive NLIDB (GINLIDB)

[11] came with a component namely database

adaptor which allowed the system to interact with

multiple DBMS tools. It is used to set the

environment according to the DBMS tool in use.

One very recent NLIDB namely AskMe [12]

presented a feature query-authoring service which

helps a user to frame the query properly so that it

can be validated before getting fired on database. It

does not wait for the query to be fired on database

and get error if any. It identifies error while framing

the query.

 It is difficult to say which existing interface is the

best but through the study; the problem that we

found is that they do not support most of the features

of SQL. This made us to work in this direction. We

developed the interface with the intention that it

supports more features of SQL than provided by any

other system developed so far.

III. PROPOSED SYSTEM
The proposed system is an extension of natural

language interface for CINDI virtual library [3]. The

only difference is that their idea of templates is

replaced with more sophisticated Expert System

which is responsible for converting English language

query into SQL query. Architecture of proposed

NLIDB namely PBNLIDB is shown in Fig. 1.

Initially hyponyms, hypernyms and synonyms of all

table and column names are found out using

WordNet and stored in the knowledge base.

Database Administrator can further add or remove

words to or from the knowledge base. This pre-

processing is done only once. This pre-processing is

done only once or when there is a change in the

database schema. Knowledge base allows a user to

use similar words rather than the exact words present

in the database. For example the words “income” or

“salary”, both are allowed in a query even if only

“salary” is one of the column names and not

“income”.

 At run time initially an English language query is

accepted. This query is syntactically parsed and

tagged using Link Parser. Then it is tested

semantically- whether the query asked is relevant to

the database or not. Finally the most important

component Expert System is used to translate the

asked query into SQL query. Fig. 2 shows internal

modules of the Expert System. In the Expert System

patterns of various features of SQL like simple

query, aggregate function, relational operator, short

circuit logical operator and join among multiple

tables are defined. These features are discussed in

the following sections taking the example of an

employee database. The E-R diagram of employee

database is shown in Fig. 3.

Niket Choudhary Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 2), January 2015, pp.105-110

 www.ijera.com 107 | P a g e

Fig. 1. Architecture of PBNLIDB

Fig. 2. Internal Modules of Expert System

Fig. 3. E-R diagram of an employee database

Syntactic

analysis and

tagging

User Input

Tokenizing

Link Parser

Semantic

analysis

Expert

system

Generate

query

Extract data

Pre-processor

Database

schema

User defined

vocabulary rules

WordNet

Domain specific

data

Database records

Pattern Recognition

Simple Query Aggregate

function

Relational

operator

SC Logical

operator

Join

Query Authoring

Employee

empid name salary

WorksOn

Project

projid title branch

profile

Niket Choudhary Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 2), January 2015, pp.105-110

 www.ijera.com 108 | P a g e

 Once pattern of these functions is identified, one of

these features is selected, an appropriate SQL

statement is prepared, fired on database and result is

displayed to the user. To begin with the discussion

of features included in PBNLIDB, first refer to

Table I for various acronyms used for defining

patterns.

TABLE I. Acronyms used for defining Patterns

An SQL template containing all the acronyms

mentioned in table 1is as shown below:

select <AF><DC> from <TB> where <PC1>

<RO1> <VL1> <LO1> <PC2> <RO2> <VL2>

<LO2> ...

3.1 Simple Query
This includes all those queries in which only TB or

DC with their TB are mentioned. Following are few

examples of simple queries based on employee

database.

Example 1: List details of all employees.

Here “details” tells to select all column names and

employee is identified as TB. So the SQL query

generated is

SELECT * FROM EMPLOYEE

Example 2: Show the names and salaries of all

employees.

In this example name and salary are identified as DC

and employee as TB. So SQL query generated is

SELECT NAME,SALARY FROM EMPLOYEE

Thus valid patterns for simple query are- {TB},

{DC, TB} and invalid pattern is {DC}.

Invalid pattern {DC} indicates that asking only

column names without their table name is not

allowed and user is asked to further clarify the query

by selecting a table name from many, produced as

options by query authoring service.

3.2 Queries with aggregate function

Various aggregate functions supported by our

system are count, sum, avg, min, max and distinct.

Actually more than these can be seen in a DBMS

tool but in our interface, only the aforementioned

aggregate functions are included. Few examples

mentioned below are the queries that require

aggregate function:

Example 1: What is the number of employees

working in the industry?

Here AF is count, DC is name and TB is employee.

Name is identified as DC because it serves as default

attribute [3] for the table. So the SQL query

generated is

SELECT COUNT(NAME) FROM EMPLOYEE

Example 2: What is the total salary of all

employees?

Similar to previous example here SQL query

generated is

SELECT SUM(SALARY) FROM EMPLOYEE

“total” in the query is mapped to SUM using the

knowledge base.

 In the above examples one aggregate function,

column name and table name is mentioned. If

column name is not mentioned then default attribute

is taken as column name. Aggregate function like

sum cannot be applied onto a column with string

data type. In such a situation again query authoring

service informs the user to select one of the columns

of that table whose data type is integer or float. Thus

based on this observation valid patterns for

aggregate function are- {AF,TB}, {AF,DC,TB} and

invalid patterns include {AF}, {AF,DC}. In this

feature there cannot be more than one AF, DC and

TB.

3.3 Queries with Relational Operator
The relational operators processed by SQL are as

follows:

Equal to (=),

Not equal to (!=),

Greater than (>),

Greater than or equal to (>=),

Lesser than (<) and

Lesser than or equal to (<=)

Consider following examples to understand the valid

and invalid patterns for this functionality.

Example 1: Which employee has salary greater than

25000?

Here DC is name (as no columns are mentioned so

default attribute is taken), TB is employee, PC is

salary, RO is > and VL is 25000. Thus SQL query

generated is

SELECT NAME FROM EMPLOYEE WHERE

SALARY > „25000‟.

Example 2: What is the empid and name of

employee whose salary is greater than 25000?

In this case DC are empid and name, TB is

employee, PC is salary, RO is > and VL is 25000.

Thus SQL query generated is

SELECT EMPID,NAME FROM EMPLOYEE

WHERE SALARY > „25000‟

 The above example indicates that a query

requiring relational operator functionality must have

at least one TB, one PC, one RO and one VL.

Sr. No. Acronyms Meaning

1. DC Desired Column

2. TB Table Name

3. AF Aggregate Function

4. PC Predicate Column

5. RO Relational Operator

6. VL Value

7. LO Short circuit logical

operator

Niket Choudhary Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 2), January 2015, pp.105-110

 www.ijera.com 109 | P a g e

Thus valid patterns for using relational operator are-

{DC,TB,PC,RO,VL}, {TB,PC,RO,VL} and invalid

patterns are- {PC}, {RO}, {VL}, {PC,RO},

{PC,VL}, {RO,VL}, {DC,PC}, {DC,RO},

{DC,VL}, {TB,PC}, {TB,RO}, {TB,VL},

{DC,TB,PC}, {DC,TB,RO}, {DC,TB,VL},

{DC,PC,RO}, {DC,PC,VL}, {DC,RO,VL},

{TB,PC,RO}, {TB,PC,VL}, {TB,RO,VL},

{DC,TB,PC,RO}, {DC,TB,PC,VL},

{DC,TB,RO,VL}.

3.4 Query with short-circuit logical operator
The short circuit logical operators are “AND” and

“OR”. They are used in predicate section of an SQL

query for applying more than one constraint.

Consider following examples for identifying the

need of short-circuit logical operators.

Example 1: Who is the employee whose salary is

more than 20000 and profile is manager?

In this example DC is name (default attribute), TB is

employee, PC are salary and profile, RO are > and =

, VL is 20000 and manager and LO is “and”. So the

SQL query generated is

SELECT NAME FROM EMPLOYEE WHERE

SALARY > „20000‟ AND PROFILE =

„MANAGER‟

Example 2: Who is the employee whose salary is

more than 20000 and less than 50000?

Here DC is name, TB is employee, PC is salary, VL

is 20000 and 50000, RO are > and < and LO is

“and”. Thus SQL query generated is

SELECT NAME FROM EMPLOYEE WHERE

SALARY > „20000‟ AND SALARY < „50000‟

Example 3: Who is the employee whose salary is

more than 20000 and less than 50000 and profile is

either manager or team leader?

In this case DC is name, TB is employee, PC are

salary and profile, RO are >, <, = , VL are 20000,

50000, manager and team leader. The SQL query

generated is

SELECT NAME FROM EMPLOYEE WHERE

SALARY > „20000‟ AND SALARY < „50000‟

AND PROFILE = „MANAGER‟ OR PROFILE =

„TEAM LEADER‟

 Observing the above examples it is clear that at

least one TB, more than one PC with their RO and

VL or one PC with more than one RO and VL has to

be present separated by “and” or “or”.

 Thus valid patterns for short-circuit logical

operator are- {TB,PC,RO,VL,LO},

{DC,TB,PC,RO,VL,LO}. For invalid pattern mainly

count of various entities in the set are considered.

For example the number of PC and VL must be

equal if there are distinct PCs are used. For one PC

multiple VL are possible. The count of LO is one

less than the number of VL. In a query there can be

many PC with different count of their VL. To handle

such situation their position in the query is

considered. To identify VL of PC1 all VL present

between PC1 and PC2 are taken. Similarly for VL of

PC2 all VL between PC2 and PC3 are taken and so

on. For final PC, PC3, VL coming after PC3 and

before end of the query are taken as VL for PC3. In

this case there are no special patterns are defined,

instead the count and position of various PC,RO and

VL are considered and valid and invalid patterns of

relational operators are used with LO as one more

data of the set.

3.5 Queries with join
Join is used to fetch records from multiple tables.

Following are the examples considered for

identifying the valid and invalid patterns of Join

operation.

Example 1: Which employee is doing the project of

ABC Bank?

Here there are two different TB are used- one is

employee and another is Project. In this case, the

relationship “WorksOn” is also taken by default. The

SQL query generated is

SELECT EMPLOYEE.NAME FROM

EMPLOYEE,WORKSON,PROJECT WHERE

EMPLOYEE.EMPID = WORKSON.EMPID AND

WORKSON.PROJID = PROJECT.PROJID

Example 2: Which employee is doing the project of

ABC Bank in Mumbai branch and salary is 2000?

Here extra conditions are put other than default as in

the previous example. Extra conditions include PC

as project.branch and employee.salary, RO as = and

=, VL as Mumbai and 2000. Thus SQL query

generated is

SELECT EMPLOYEE.NAME FROM

EMPLOYEE,WORKSON,PROJECT WHERE

EMPLOYEE.EMPID = WORKSON.EMPID AND

WORKSON.PROJID = PROJECT.PROJID AND

PROJECT.BRANCH = „MUMBAI‟ AND

EMPLOYEE.SALARY = „20000‟

 Observing the above examples we get that a

query in this group contains more than one TB plus

it may contain extra predicates. Without any extra

predicate default SQL template is used but presence

of extra predicate makes it follow the rules of

relational operator or short circuit logical operator as

well.

 Thus briefly explaining, a set of valid and invalid

patterns of various features of SQL are defined in

the Expert System. Query Authoring module of

Expert System is used to provide hints to the user in

case the query asked contains an invalid pattern.

Hints are provided based on valid pattern of the

feature for which invalid pattern is identified. The

sets formed in both valid and invalid group of all

features are unique. Thus there is no conflict in

identifying a feature based on the pattern identified

from the English language query.

Niket Choudhary Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 2), January 2015, pp.105-110

 www.ijera.com 110 | P a g e

IV. CONCLUSION AND FUTURE WORK
In summary, the proposed system is an

extension of natural language interface for CINDI

virtual library. For translation of English language

query into SQL query their templates based module

is replaced with more sophisticated Expert System.

The intent of using patterns is to support more

complexities in the translation function and making

the interface more aware of the features of SQL.

Currently, the proposed system supports simple

query, aggregate function, relational operator, short-

circuit logical operator and join. For each of these

features, a set of valid and invalid patterns are

defined. These patterns are unique throughout the

features. In case, any invalid pattern is identified,

query authoring service provides options to the user

containing valid patterns for that feature. Short

circuit logical operator and join work in

collaboration with the patterns of relational operator.

There is no need to define lengthy and duplicate

patterns for short circuit logical operator and join.

Our next target will be to make the interface aware

of other features of SQL like clauses (group by and

order by), keywords used in predicate like

BETWEEN, NOT IN, IN etc., nested query,

varieties of join, union, intersection, difference and

much more. More attention will be made towards

developing interface in such a manner that a new

feature could use the patterns or functionalities of its

previous features.

REFERENCES
[1] I. Androutsopoulos, G.D. Ritchie, and P.

Thanisch, Natural Language Interfaces to

Databases – An Introduction, Journal of

Natural Language Engineering 1 Part 1, 1995,

29–81.

[2] A. Popescu, A. Armanasu, O. Etzioni, D. Ko,

and A. Yates, PRECISE on ATIS: Semantic

Tractability and experimental results,

Proceedings of the National Conference on

Artificial Intelligence – AAAI, 2004, 1026–

1027.

[3] N. Stratica, L. Kosseim and B.C. Desai, Using

Semantic Templates for a natural language

interface to the CINDI virtual library, Data &

Knowledge Engineering Journal 55 (1), 2004,

4–19.

[4] H. Young, and S. Young, A data-driven spoken

language understanding system, Proceedings

of the IEEE Workshop on Automatic Speech

Recognition and Understanding, vol. 1, 2003,

583–588.

[5] J.L. Vicedo, and A. Ferrandez, Importance of

pronominal anaphora resolution in question

answering systems, Proceedings of the 38th

Annual Meeting of the Association for

Computational Linguistics, 2000, 555–562.

[6] W.A. Woods. Progress in natural language

understanding: An application to lunar

geology, AFIPS ’73: Proceedings of the June

4–8, national computer conference and

exposition, ACM, 1973, 441–450.

[7] G. Hendrix, E. Sacrdoti, D. Sagalowicz, and J.

Slocum, Developing a natural language

interface to complex data, ACM Transactions

on Database Systems, vol 3, 1978, 105–147.

[8] E.F. Codd, Seven steps to rendezvous with the

casual user, IFIP Working Conference Data

Base Management, 1974.

[9] D. Warren, and F. Pereira. An efficient and

easily adaptable system for interpreting natural

language queries, American Journal of

Computational Linguistics, vol. 8, 1982, 3-4.

[10] Y. Li, H. Yang, H.V. Jagadish, NALIX: an

interactive natural language interface for

querying XML, Proceedings of the

International Conference on Management of

Data, 2005, 900–902.

[11] P.R. Devale, and A. Deshpande, Probabilistic

context free grammar: an approach to generic

interactive natural language interfaces to

databases, Journal of Information, Knowledge

and Research in Computer Engineering, vol. 1,

2010, 52–58.

[12] M. Llopis, A. Ferrandez, How to make a

natural language interface to query databases

accessible to everyone: An example, Computer

Standards and Interacts, Elsevier, 2012, 470-

481.

